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Understanding when operators are experiencing high workload is important in the design and 

implementation of Command, Control, Communications, Computers, Intelligence, Surveillance 

and Reconnaissance (C4ISR) systems. Fortunately physiological metrics, such as pupillary 

reflexes, have been shown to correlate with increases in mental workload. This paper proposes an 

automated method for characterizing and identifying task evoked pupillary responses (TEPR) 

during various workload levels. This method captures findings and observations from previous 

TEPR studies in an automated algorithm. This algorithm characterizes the rate of pupil dilation 

and constriction into a TEPR area metric, which is then used to identify times of increased 

operator workload. Independent trial analysis shows the benefits of using the TEPR area for 

distinguishing different workload responses but additional investigation is needed to make the 

algorithm more robust to individual variability. 

 

 

INTRODUCTION 

 
As computing power increases and military operational 

environments become more complicated, warfighters have to 

constantly push the limits of their physical and mental 

abilities. Assigning too many tasks to an operator without 

understanding their effects on cognitive load, or workload, can 

cause the operator to make poor and even catastrophic 

decisions. Hence, it is important to measure and understand 

the effects different tasks and stimuli have on workload, 

especially when designing human-computer interfaces 

(Sweller, 2006). Several physiological metrics, including heart 

rate, electroencephalograph, galvanic skin response, and 

pupillometry are used to model workload (Ahern and Beatty, 

1979; Marshall, 2002; Marshall, 2007; Van Orden, Limbert, 

Makeig, & Jung, 2001; Wilson, Estepp, & Davis, 2009; 

Wilson & Russell, 2003; Wilson & Russell, 2007). In this 

paper we focus on pupillometry metrics because they have 

been reliably correlated with workload (Iqbal, Zheng, & 

Bailey, 2004; Klingner, Kumar, & Hanrahan, 2008; Marshall, 

2007; Moresi, Adam, Rijcken, & Van Gerven, 2008; 

Nakayama & Shimizu, 2004; Palinko, Kun, Shyrokov, & 

Heeman, 2010; Van Orden, Limbert, Makeig, & Jung, 2001). 

In addition, improvements in eye tracking technologies have 

made collecting pupillometry metrics less cumbersome and 

invasive than a number of other methods. 

Although an individual’s pupil dilates during increased 

workload, studies have shown that changes in pupil diameter 

can also be caused by a range of other factors, such as lighting 

conditions and fatigue (Geacintov & Peavler, 1974; LeDuc, 

Greig, & Dumond, 2005). Furthermore, pupil sizes and 

reflexes naturally vary amongst individuals making it 

challenging to associate pupil diameter averages with 

workload, especially across individuals and for long complex 

tasks. In this paper, we propose a method to examine and 

identify specific task evoked papillary response (TEPR) 

signatures in a visual unmanned aerial vehicle (UAV) task 

with varying levels of workload. We assess the utility of this 

method for identifying TEPR events and classifying workload 

levels. 

 

Task Evoked Pupillary Response 

 

Task evoked pupil dilations has been shown to correlate 

with increased mental workload (Ahern and Beatty, 1979; 

Iqbal, Zheng, & Bailey, 2004; Klingner, Kumar, & Hanrahan, 

2008). In addition, an individual’s pupil remains dilated longer 

during more difficult cognitive tasks. A number of methods 

involving averages, percent changes, and wavelet analysis, 

have been used to study this pupil reflex (Iqbal, Zheng, & 

Bailey, 2004; Marshall, 2002; Marshall, 2007). This paper 

builds on the idea that a pupil reflex can be analyzed in near 

realtime by proposing a method for detecting unique TEPR 

characteristics correlated to increased workload. An advantage 

of this method is that it does not solely rely on pupil diameter 

block or trial averages.  

Our hypothesis is that task evoked pupillary responses can 

be characterized and can help classify different workload 

levels. We define the dominant features of the papillary reflex 

during a mentally challenging task as a rapid increase in pupil 

diameter followed by a gradual return to normal size, where 

the constriction rate is inversely related to the workload level 

experienced (the slower the constriction, the higher the 

workload). Furthermore, we propose using the pupil diameter 

area during a TEPR event (the TEPR area) as an indicator for 

workload: the higher the workload, the longer it takes for the 
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pupil to return to its pre-stimulus size, resulting in a larger 

TEPR area (see Figure 1). 

 

 
Figure 1. Conceptual illustration of one’s pupil reflex under 

different workloads (shaded area is the TEPR area) 

 

METHOD 

 

Participants  

 

Fifteen students from George Mason University 

volunteered to participate in our UAV training simulation 

experiment. All participants had normal or corrected to normal 

vision. However, data from four students had to be omitted 

from the analysis due to experimental complications. 

 

Materials  

 

Virtual Battlespace 2 (a high-fidelity virtual training 

system) was used to construct UAV simulation scenarios for 

this experiment. A Tobii X120 desktop unit was used to 

collect pupillometry data at 60 hertz. The unit was placed 

below the desktop monitor and in front of the participant. The 

system was calibrated to the subject before each experiment. 

 

UAV Desktop Simulation  

 

Participants engaged in a desktop simulation in which 

they were trained to report information on enemy target 

vehicles as seen from a UAV. Participants were given the 

heading of the UAV and had to estimate the heading of the 

vehicle on the ground as it traveled across the screen in 

various directions. In addition, a graphical depiction of a 

compass facing north was provided to the participant for 

reference (see Figure 2). After entering the target vehicle’s 

heading, participants were asked to rate their mental effort in 

calculating the heading.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. User interface for the experiment 

 

For each trial, the vehicle appeared on the screen after a 

random amount of time ranging between one and five seconds 

from the start of the video. Once the subject saw the vehicle, 

he or she had to click on the screen with the mouse. The 

participant then had to calculate and submit the heading of the 

target vehicle. The time between acknowledging the vehicle’s 

presence and submitting the heading response was when the 

mental calculation occurred. 

 

Difficulty Levels 

 

Difficulty The UAV experiment consisted of 60 trials 

divided into three levels of difficulties: low, medium, and high 

(see Table 1). In the low workload trials, the UAV heading 

was set to 0° (North) and target vehicle headings were 

randomized in 30° increments. In the medium workload trials, 

the UAV headings varied randomly between 90°, 180° and 

270° and the target vehicle headings were randomized in 30° 

increments. In the high workload trials, both the UAV and 

target vehicle headings were randomized in 30° increments. 

 

Algorithm Development 

 

Building on findings and observations from previous 

TEPR studies, we developed an algorithm to detect different 

workload levels within a task (Ahern and Beatty, 1979; Iqbal, 

Zheng, & Bailey, 2004; Klingner, Kumar, & Hanrahan, 2008). 

This algorithm was scripted in Matlab and can be provided 

upon request. 

 

Data Preprocessing 

 

The raw pupil diameter data was first filtered using an one 

second averaging window moving every 0.1 seconds. These 

values were chosen to reduce the noise while providing 

enough signal granularity. We next calculated the rate of the 

pupil dilations and constrictions, which helped identify when 

rapid pupil dilations occurred. Pupil diameter slope was 

calculated over a two second window every 0.1 second. These 

initial values were chosen based on observations from 

previous studies (Ahern and Beatty, 1979; Klingner, Kumar, 

& Hanrahan, 2008). Identifying and optimizing these 

PROCEEDINGS of the HUMAN FACTORS and ERGONOMICS SOCIETY 55th ANNUAL MEETING - 2011 208



parameters for individuals and specific tasks are areas of 

continued research. 

 

 
Table 1. There were three levels of difficulty in the 

experiment  

 

Characteristics of TEPR 

 

Typically, a TEPR signal during increased mental 

workload is characterized by a rapid dilation of the pupil 

followed by a constriction period as the pupil returns to 

normal size. Pupil dilation rates are fairly similar across 

workload levels but the constriction rates vary with workload: 

slower constriction rates are associated with higher workload. 

To capture this effect, we calculate the area of the pupil 

diameter curve during a TEPR event (the TEPR area): the 

higher the workload, the more area under the pupil diameter 

curve, the larger the TEPR area (see Figure 1). 

 

Workload Measures 

 

We hypothesized that the TEPR area can be used as 

workload indicators; the larger the TEPR area, the higher the 

workload experienced by the individual.  

 

TEPR Algorithm 

 

We developed an algorithm that identifies the times when 

subjects are experiencing increased workload according to our 

TEPR model. This algorithm requires pupil diameter, pupil 

diameter slope, and a validity metric of the eye data as input 

variables. The algorithm consists of five steps and runs 

independently for each subject. Step 1 is a batch process while 

Steps 2-5 incrementally steps through the dataset from the 

start of the experiment (see Figure 3). 

 

Step 1: Find a pupil dilation criteria 

The first step is to find a pupil dilation criteria that 

distinguishes between rapid pupil dilations from normal pupil 

oscillations. Because pupils typically dilate faster during a 

mental stimulus, we set the dilation criteria to include the 

upper twenty percent of slope values. The upper twenty 

percent was chosen for simplicity, while providing a range of 

slope values with reasonable stratification. This value was 

subjectively assigned and additional research is needed to 

investigate optimal criterions that can better account for 

individual variability.  

 

Step 2: Identify times of rapid pupil dilation 

Next, the algorithm identifies and marks the times when 

pupil diameter slope exceeds the dilation criteria determined 

from Step 1. This marker indicates the beginning of a TEPR 

event. Furthermore, the pupil diameter at the start of the TEPR 

event is referred to as the pupil diameter baseline. 

 

Step 3: Integrate the pupil diameter during the TEPR event 

Once a TEPR event is detected, the algorithm begins 

summing the area between the pupil diameter and the pupil 

diameter baseline. This cumulative sum is referred to as the 

TEPR area. 

 

Step 4: Check for break conditions 

The algorithm continues to integrate the pupil diameter 

area until either the pupil diameter constricts back to its pre-

TEPR/baseline size or the eye data becomes invalid, i.e. the 

eye tracker loses track of the eyes. Either one of these two 

conditions can end the TEPR event. 

 

Step 5: Repeat Steps 2-4 

Steps 2 through 4 are repeated until the end of the 

experiment. This algorithm generates many TEPR events of 

varying durations and magnitudes. 

 

 
Figure 3. Illustration of Steps 2-5 of TEPR algorithm 
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Figure 4. Data from a subject comparing pupil diameter (top 

row) and cumulative TEPR (bottom row) area during a low 

workload event, Trial #2 (left column), and a high workload 

event, Trial #41 (right column) 

 

The top two graphs in Figure 4 show data from a subject’s 

pupil diameter and the bottom two graphs show the 

cumulative TEPR areas. As expected the TEPR area during 

the higher workload trial is greater than during the low 

workload trial. The TEPR area is clearly larger during Trial 

#41 even though the pupil diameter averages for both trials are 

almost the same (see Table 2). The method we propose can 

also help identify the specific times when participants are 

starting to concentrate and focus more.  

The TEPR area metric can be helpful in distinguishing the 

workload levels between trials. We conducted a within 

subjects ANOVA to determine whether our TEPR area metric 

was able to distinguish difficulty levels across the three UAV 

difficulty levels. Only the maximum TEPR area value for each 

trial was used, and the analysis focused on the heading 

calculation section of the experiment. Results of the analysis 

were not statistically significant (p-value = 0.20), possibly 

caused by the small sample size (power was only 0.25). 

Although not statistically significant, the results do show 

promise and we are currently running more subjects and will 

perform this analysis on a task with a simpler design and more 

distinct difficult levels.  

Additionally, we tested the utility of this data in artificial 

neural networks (ANNs) because ANNs have been used 

successfully to develop predictive workload models with 

psychological data in previous studies (Van Orden, Limbert, 

Makeig, & Jung, 2001; Wilson, Estepp, & Davis, 2009; 

Wilson & Russell, 2003; Wilson & Russell, 2007). Given the 

specific algorithm parameters we used, the TEPR area metric 

does not show a significant increase in accurate classification 

rates when incorporated into ANN models (see Figure 5). We 

conducted a single factor ANOVA to assess the effect of the 

TEPR area metric on classification performance for eight 

subjects. Although the classification rates for three 

participants increased by five percent, overall classification 

improvement was not statistically significant (p-value = 0.8). 

Again, we believe that as we increase the sample size and 

refine our algorithms to better account for individual 

variability and data validity, this statistical significant will 

improve.  

These results suggest that the TEPR algorithm can be a 

useful alternative method for detecting when a participant is 

experiencing increasing workload. However, more work is 

needed to refine the constraints and parameters governing the 

algorithm. 

 

 
Table 2. Comparing pupil diameter and TEPR metrics 

 

 
Figure 5. Classification rates of neural network models 

 

DISCUSSION 

 

In this paper, we proposed and developed a method that 

incorporates TEPR research into an automated search 

algorithm aimed at identifying when operators are under high 

workload. This research used previous TEPR studies as a 

framework in developing a method that detects and highlights 

pupil dilation signatures corresponding to specific TEPR 

characteristics. Because this method does not rely only on 

pupil diameter averages, it will be less impacted by fatigue. 

For example, a subject 50 minutes into an experiment will on 

average be more tired than when he or she started. Hence, the 

subject’s pupil diameter averages for the later trials would be 

smaller than his or her pupil diameter averages during the first 

few trials even if the later trials are more difficult. The TEPR 

algorithm we propose will be better at addressing this issue 

because it is more dependent on pupil dilation and constriction 

rates.  

Given the criterions used in the algorithm, the results and 

effectiveness of the TEPR metric differed across individuals. 

For some individuals, the addition of the TEPR metric was 

helpful in developing better predictive neural network models. 

For other, the classification performance of their models either 

remained the same or slightly decreased. This could be caused 

by the conservative data validation constraints we set in the 

TEPR algorithm. This is an area that requires further analysis 
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and investigation. The classification results could also be 

caused by random seeds associated with developing neural 

networks and the time increments of the inputs. Additional 

saliency analysis and Monte Carlo simulations can be used to 

assess if the TEPR metrics will significantly improve overall 

neural network performances across subjects.  

It is apparent that more work needs to be done to improve 

the adaptability of this algorithm to different individuals. We 

will look at additional ways to determine the pupil diameter 

criteria, allowing the criteria to change with time to better 

account for experimental factors. Furthermore, additional 

research is needed to understand the sensitivity of the TEPR 

metric when subjects look at different screen locations with 

varying brightness and contrast levels. 

Although the methodology proposed has similarities with 

the wavelet analysis researched by Marshall (2002), we 

believe that this approach is more intuitive and can be 

implemented easier. The algorithm is transparent and the steps 

are fairly simple. The parameters for this algorithm can also be 

adjusted and customized to individual subjects and tasks. 

In this paper we presented a method for analyzing pupil 

diameter data for specific TEPR event signatures. The 

algorithm we developed is based on previous TEPR studies 

and observations. It assumes that TEPR events can be 

characterized by rapid pupil dilations followed by pupil 

constrictions where the rate of pupil constriction is inversely 

proportional to the workload level experienced. 

The TEPR metric can distinguish between trials from 

different workload blocks and can provide additional benefits 

to pupil diameter averages when the pupillometry data is 

valid. Further work is needed to make the algorithm more 

robust and generlizable across individuals. Although this 

method is currently applied post-hoc, our goal is to, after 

ensuring the method’s validity, adapt it to real-time analysis. 
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